Higher-Order Masking and Shuffling for Software Implementations of Block Ciphers

نویسندگان

  • Matthieu Rivain
  • Emmanuel Prouff
  • Julien Doget
چکیده

Differential Power Analysis (DPA) is a powerful side channel key recovery attack that efficiently breaks block ciphers implementations. In software, two main techniques are usually applied to thwart them: masking and operations shuffling. To benefit from the advantages of the two techniques, recent works have proposed to combine them. However, the schemes which have been designed until now only provide limited resistance levels and some advanced DPA attacks have turned out to break them. In this paper, we investigate the combination of masking and shuffling. We moreover extend the approach with the use of higher-order masking and we show that it enables to significantly improve the security level of such a scheme. We first conduct a theoretical analysis in which the efficiency of advanced DPA attacks targeting masking and shuffling is quantified. Based on this analysis, we design a generic scheme combining higher-order masking and shuffling. This scheme is scalable and its security parameters can be chosen according to any desired resistance level. As an illustration, we apply it to protect a software implementation of AES for which we give several security/efficiency trade-offs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order Masking and Shu ing for Software Implementations of Block Ciphers

Di erential Power Analysis (DPA) is a powerful side channel key recovery attack that e ciently breaks block ciphers implementations. In software, two main techniques are usually applied to thwart them: masking and operations shu ing. To bene t from the advantages of the two techniques, recent works have proposed to combine them. However, the schemes which have been designed until now only provi...

متن کامل

How Fast Can Higher-Order Masking Be in Software?

It is widely accepted that higher-order masking is a sound countermeasure to protect implementations of block ciphers against side-channel attacks. The main issue while designing such a countermeasure is to deal with the nonlinear parts of the cipher i.e. the so-called s-boxes. The prevailing approach to tackle this issue consists in applying the Ishai-Sahai-Wagner (ISW) scheme from CRYPTO 2003...

متن کامل

Threshold Implementation as a Countermeasure against Power Analysis Attacks

One of the usual ways to find sensitive data or secret parameters of cryptographic devices is to use their physical leakages. Power analysis is one of the attacks which lay in such a model. In comparison with other types of side-channels, power analysis is so efficient and has a high success rate. So it is important to provide a countermeasure against it. Different types of countermeasures use ...

متن کامل

Affine Masking against Higher-Order Side Channel Analysis

In the last decade, an effort has been made by the research community to find efficient ways to thwart side channel analysis (SCA) against physical implementations of cryptographic algorithms. A common countermeasure for implementations of block ciphers is Boolean masking which randomizes by the bitwise addition of one or several random value(s) to the variables to be protected. However, advanc...

متن کامل

LS-Designs: Bitslice Encryption for Efficient Masked Software Implementations

Side-channel analysis is an important issue for the security of embedded cryptographic devices, and masking is one of the most investigated solutions to mitigate such attacks. In this context, efficient masking has recently been considered as a possible criteria for new block cipher designs. Previous proposals in this direction were applicable to different types of masking schemes (e.g. Boolean...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009